Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.

نویسندگان

  • Massimo Di Nicola
  • Carmelo Carlo-Stella
  • Michele Magni
  • Marco Milanesi
  • Paolo D Longoni
  • Paola Matteucci
  • Salvatore Grisanti
  • Alessandro M Gianni
چکیده

CD2(+) T lymphocytes obtained from either the donor of bone marrow stromal cells (BMSCs) or a third party were cultured in mixed lymphocyte reactions (MLRs) with either allogeneic dendritic cells (DCs) or peripheral blood lymphocytes (PBLs). When autologous or allogeneic BMSCs were added back to T cells stimulated by DCs or PBLs, a significant and dose-dependent reduction of T-cell proliferation, ranging from 60% +/- 5% to 98% +/- 1%, was evident. Similarly, addition of BMSCs to T cells stimulated by polyclonal activators resulted in a 65% +/- 5% (P =.0001) suppression of proliferation. BMSC- induced T-cell suppression was still evident when BMSCs were added in culture as late as 5 days after starting of MLRs. BMSC-inhibited T lymphocytes were not apoptotic and efficiently proliferated on restimulation. BMSCs significantly suppressed both CD4(+) and CD8(+) T cells (65% +/- 5%, [P =.0005] and 75% +/- 15% [P =.0005], respectively). Transwell experiments, in which cell-cell contact between BMSCs and effector cells was prevented, resulted in a significant inhibition of T-lymphocyte proliferation, suggesting that soluble factors were involved in this phenomenon. By using neutralizing monoclonal antibodies, transforming growth factor beta1 and hepatocyte growth factor were identified as the mediators of BMSC effects. In conclusion, our data demonstrate that (1) autologous or allogeneic BMSCs strongly suppress T-lymphocyte proliferation, (2) this phenomenon that is triggered by both cellular as well as nonspecific mitogenic stimuli has no immunologic restriction, and (3) T-cell inhibition is not due to induction of apoptosis and is likely due to the production of soluble factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relevance of the mevalonate biosynthetic pathway in the regulation of bone marrow mesenchymal stromal cell-mediated effects on T-cell proliferation and B-cell survival.

BACKGROUND Bone marrow mesenchymal stromal cells can suppress T-lymphocyte proliferation but promote survival of normal and malignant B cells, thus representing a possible target for new therapeutic schemes. Here we defined the effects of cholesterol synthesis inhibitors on the interaction between these mesenchymal stromal cells and T or B lymphocytes. DESIGN AND METHODS We exposed mesenchyma...

متن کامل

Rat Mesenchymal Stromal Cells Inhibit T Cell Proliferation but Not Cytokine Production Through Inducible Nitric Oxide Synthase

Mesenchymal stromal cells (MSC) have important immunomodulatory properties, they inhibit T lymphocyte allo-activation and have been used to treat graft-versus-host disease. How MSC exert their immunosuppressive functions is not completely understood but species specific mechanisms have been implicated. In this study we have investigated the mechanisms for rat MSC mediated inhibition of T lympho...

متن کامل

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34pos Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction

Mesenchymal stem/stromal cells (MSCs) represent a promising cell source for research and therapeutic applications, but their restricted ex vivo propagation capabilities limit putative applications. Substantial self-renewing of stem cells can be achieved by reprogramming cells into induced pluripotent stem cells (iPSCs) that can be easily expanded as undifferentiated cells even in mass culture. ...

متن کامل

Trahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells

Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 99 10  شماره 

صفحات  -

تاریخ انتشار 2002